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The ignition of lean H,/air mixtures under microgravity (pg) conditions can lead to 
the formation of spherical premixed flames (flame balls) with small PBclet number 
(Pe). A central question concerning these structures is the existence of appropriate 
stationary stable solutions of the combustion equations. In this paper we examine an 
individual flame ball that is suspended in a fluid whose velocity far from the flame 
is steady and varies linearly in space. Detailed results are obtained for simple shear 
flows and simple straining flows, both axisymmetric and plane. 

Convection enhances the flux of heat from the flame and the flux of mixture to the 
flame, but because the Lewis number (Le) is less than unity the relative impact on 
the former is greater than on the latter. Consequently, there is a net loss of energy 
from the flame to the far field, and if large enough this will quench the flame. For 
values of shear or strain less than the quenching value there are two possible 
stationary solutions, but one of these is unstable to spherically symmetric 
disturbances of the flame ball. The radius of the other solution is unbounded as Pe 
goes to zero. Examination of a class of three-dimensional disturbances reveals no 
additional instability when the energy losses are due only to convection, but 
sufficiently large flame balls are unstable when volumetric heat losses from radiation 
are accounted for. This last result is in agreement with previous results that have 
been obtained for zero Pe, albeit with inadequate accounting for the flow field 
generated by the perturbations. 

1. Introduction 
When very lean H,/air mixtures are ignited, Turing instabilities cause frag- 

mentation of the flame. (These are instabilities that arise because the Lewis number 
Le differs from unity. Here Le is small and the Turing instability is the well-known 
cellular instability of premixed flames (Williams 1985).) At Earth’s gravity small 
flame caps 4 m m  or so in diameter are generated, and these rise at steady speed 
because of buoyancy effects and appear to have permanent form (Lewis & von Elbe 
1987). Under microgravity (pg) conditions spherical flames (flame balls) are observed 
with diameters between 1 and 2cm (Ronney 1990). Whether or not these have 
permanent form is unresolved by drop-tower experiments (Ronney 1990) because of 
the short test times (2.2 s), but recently they have been seen in flight tests (Keplerian 
trajectory) for up to 15 s (P. Ronney, private communication) and we believe that 
their existence is no longer in doubt. This paper is concerned with the structure and 
stability of such flames. 



408 J .  Buckmaster and G .  Joulin 

The ignition process and subsequent flame evolution generate an unsteady flow 
field, but the flame balls are carried along by this flow and their spherical shape 
suggests that convection effects are small. Thus a natural starting point is to neglect 
convection entirely and seek stationary flame solutions with a quiescent far field. 
This was first done by Zeldovich (see Zeldovich P t  al. 1985) motivated by the 1 g 
observations. The equations, which wc shall describe later, then admit solutions in 
which the gas velocity is zero everywhere; these are curious creatures, premixed 
flames in which the only fluxes are diffusional, but they do no violence to the physics. 

Not surprisingly, the solutions constructed by Zeldovich are unstable. The hot 
burnt gas and the flame which encloses it can act as an ignition source for the 
surrounding mixture, increasing the volume of burnt gas. Inward collapse is also 
possible, but intuitively less obvious. Thus if we arc to understand the experimental 
observations it is necessary to identify stabilizing mechanisms. 

In  Buckmaster, Joulin & Ronney (1990) i t  is shown that volumetric heat losses 
associated with radiation can stabilize flame balls. Specifically, if the losses are too 
large the flame will be quenched, but for losses less than the quenching value there 
are two solutions (figure 1) and, although the small-flame solution is unstable to one- 
dimensional disturbances and part of the large-flame branch is unstable to three- 
dimensional disturbances, there is an interval of large-flame solutions that are stable. 

Buckmaster et al. (1990) is only concerned with losses from the hot gases near the 
flame. In Buckmaster, Joulin & Ronney (1991) i t  is shown that losses from the 
relatively cool gases far from the flame also can stabilize, although the stability 
picture is modified with the neutral stability point for one-dimensional disturbances 
moving to the upper branch (figure 2). (In our analysis, the concept of ‘near’ and 
‘far’ has a precise mathematical meaning which we shall define in due course.) 

Although there is evidence that radiation losses are significant for flames in the 
near-limit mixtures that support flame balls, left unresolved in all of this work is 
whether or not the experimental heat losses have the correct magnitude. They are 
difficult to estimate. 

In  the present paper we shall consider another way in which energy can be 
extracted from a flame ball. The flame is a source of heat and for fixed source strength 
convection will generate additional heat losses which, when the PBclet number, Pe, 
(based on mass diffusion) is small, are proportional t o  (PelLe);. At the same time it 
is a sink of mixture and for fixed sink strength there will be an additional flux 
proportional to P$. These increments are not in balance since for the mixtures of 
interest Le < 1 (Lewis numbers of 0.2&O.3 are typical of lean H,/air mixtures) so that 
the incremental thermal enthalpy loss is greater than the incremental chemical 
enthalpy gain. Thus the source strength must adjust to restore the necessary energy 
balance, and the flame temperature will drop, just as i t  does when radiation losses are 
present. 

Consider a flame ball located in a flow that is non-uniform on a scale much larger 
than the flame radius. Then the flame ball will be swept along by the flow with 
insignificant lag, and in a flame-fixed frame the gas velocity in the neighbourhood of 
the ball will be a linear function of position vanishing a t  the ball itself. These are the 
flows that we shall consider, with detailed results for linear shear flows and linear 
straining flows. The PBclet number associated with these flows is defined later. 

We conclude this section with a brief description of the layout of the paper. 
Section 2 is concerned with the mathematical formulation and the specification of 

scaled non-dimensional variables. A key feature of our model is the flame-sheet 
approximation. valid when the activation energy characterizing the Arrhenius’ 
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kinetics is very large. A non-dimensional activation energy 6 (6 1 )  then becomes 
the key parameter of the problem, defining the length- and timescales. A near-jeld 
is defined on the scale of the flame-ball radius, and a far-field on the scale of 
6 x radius. 

Section 3 examines unsteady spherical flame balls. These evolve on the timescale 
02tdiff, where tdiff is the diffusion time based on the flame radius. Solution of the near 
field leads to the fundamental equation for the radius F*, 

where Fb is a constant determined by radiation losses in the burnt gas, Fb is 
essentially the flame temperature, and h is a function of the slow time t/6'tdirf 
determined from matching with the far field. Steady solutions are constructed (h  = 
constant) by examining far fields controlled by linear flows, and then 

h cc - w i ( l -  (Le)f) F*, ( 1 .2 )  

where w is the applied velocity gradient. A one-dimensional stability analysis is 
carried out by constructing infinitesimal unsteady perturbations of h generated by 
the far field. 

Section 4 considers perturbations to the flame sheet in the form of surface 
harmonics, and so deals with the three-dimensional stability question. These 
Perturbations evolve on the timescale Bt,,, and this, being much faster than the one- 
dimensional timescale, compliaates the discussion. 

2. Mathematical formulation 
The governing equations that we shall solve are 

DT 
Dt 

pC - = hV2T+QBe-E/2RT*S-f(T), ( 2 . 1 ~ )  

(2 .1  c ,  d )  
aP Dv 
at Dt 
-+V.(pu) = 0, p- = -vp+p[v 'u+p(v.u)] ,  

PT = Pf T,, 
with boundary conditions 

p+pP, T+T,,  Y+Y, as r+oo 
v a specified linear function of position. 

( 2 . l e )  

These are, for the most part, the usual equations for low-Mach-number combustion 
(Williams 1985). Thus p is the hydrodynamic pressure and is not to be confused with 
the thermodynamic pressure that would normally appear in the equation of state. 
This latter quantity is constant so that the equation of state reduces t o  Charles's law, 
( 2 . l e ) .  

The chemistry is modelled by a one-step irreversible process 

Y + products 
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at a rate proportional to ye-EIRT, 

where E is the activation energy, assumed to be a large quantity. More precisely, our 
entire discussion is an asymptotic treatment valid when 

where T* is the flame temperature. In  this limit, reaction is confined to a vanishingly 
thin flame sheet (where the temperature is T*), and is equivalent to  a Dirac S-function 
whose strength is proportional to exp (-E/2RT,) (Buckmaster & Ludford 1983). 
This is the origin of the sink term in (2.1 b )  (B is a constant). 

Consumption of the mixture Y generates heat. In a spatially homogeneous 
situation with no losses (f = 0) the associated rise in temperature is given by 

Q 
CP 

ST = --&Y, 

so that Q is a measure of the chemical enthalpy. This is the origin of the positive 
source term in (2 . la) .  

The function f (T )  is a volumetric heat-loss term that represents radiation losses. 
This mechanism is discussed in Buckmaster et al. (1990) but is included here because 
our three-dimensional stability analysis is done without adopting the constant- 
density model used in the earlier work. As there, it is assumed that f is non-zero only 
in the hot burnt gas. 

Bulk viscosity is neglected and the transport coefficients A ,  pD, and p, together 
with C p ,  are constants. 

If we integrate (2 . la ,  b )  across the flame sheet the following jump conditions are 
generated: 

where n is the distance measured along the outer normal to the sheet and the square 
bracket denotes a jump, unburnt-side values minus burnt-side values. Note that the 
strength of the S-function, and therefore the magnitude of these gradient jumps, is 
very sensitive to changes in T* when E is large. A change in T* of magnitude 
O(T,(RT,/E)) generates order of magnitude changes in the gradients and the overall 
solution. As we shall see, small PBclet numbers can generate changes in T* of this size 
via the mechanism described in 0 1 ,  and therefore can have a significant impact on the 
combustion field. 

Finally, we note that implicit in the asymptotic treatment of the chemical kinetics 
is the condition Y = 0 in the burnt gas. 

2.1. The Zeldovich solution 

(2.5) 

Equations (2.1) admit a steady, spherically symmetric solution for which u = 0. 
When there are no radiation losses ( f ~  0) it is only necessary to solve Laplace’s 
equation on each side of the flame sheet, whence 

where, apart from boundary conditions, we have only used the continuity of T and 
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L 

+ 
(2e)-' 

Heat loss, /3 cc Fb 

FIGURE 1. Flame-ball radius V.S. near-field heat loss, 1 = r,, exp ( - b y : ) ,  see Buckmaster et al. 
(1990). The thin line denotes stable solutions. 

Y at the flame sheet. The temperature T* and flame radius r* are then determined by 
invoking the gradient conditions (2.4) : 

Tb may be compared to the adiabatic flame temperature T, = T,+QY,/C, generated 
by the propagation of a plane flame. Since Le is small, Tb is substantially larger than 
T,. R, is the Zeldovich radius. 

This solution is at the core of any discussion of flame balls. All of the solutions that 
have been constructed, including those in the present paper, are generated by adding 
various perturbation terms that vanish in the limit 8+ 00 where 8 = EC,/R& is a 
non-dimensional activation energy. These generate O( Tb/@ changes in T* and O(R,) 
changes in T * .  For example, Buckmaster et al. (1990) accounts for O(ll8) radiation 
losses in the burnt gas and leads to the response of figure 1 .  In this figure, the 
Zeldovich solution corresponds to p+O (vanishing heat loss), T* finite, and is 
unstable. For non-vanishing heat losses however, stable solutions are possible, and 
these are candidates for the experimentally observed flame balls. 

The radiation losses of Buckmaster et al. (1990) are near-field losses, losses that 
occur in the region T = O(R,). Buckmaster et al. (1991) examines far-field radiation 
losses, losses in the region T = O(BR,). The far-field solution controlled by these losses, 
when matched with the inner solution on the scale T = O(R,), leads to 0(Tb/8) 
changes in T* and the response shown in figure 2. In related, as yet unpublished work, 
we have shown that placing a cold wall (at which T = T,) at a distance 0(8R,) from 
the ball also leads to the response of figure 2 (a is then proportional to the inverse of 
the ball-wall spacing). 

These various results suggest that perturbations that modify the Zeldovich 
solution by extracting heat have a dual effect. If the losses are too large (p > (2e)-' 
in figure 1 ; a > e-l in figure 2) there is no stationary solution and quenching occurs. 

14 FLM 227 
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Heat loss, a, r 
FIGURE 2. Flame-ball radius ws. far-field heat loss u (Buckmaster et al. 1991), r (eqn. (3.27)). N, is 
the neutral-stability point for radiation losses (a) ; Nr is the neutral-stability point for convection 
losses (r). 

For losses less than the quenching values, stable stationary solutions are possible. 
Here we are concerned with the extraction of heat by convection. 

The significance of the far field, r = 0(8R,), has already been noted, and in the far- 
field V2 - 1/02R;. It should be no surprise, therefore, that a slow timescale for which 
t K O2 plays an important role: for then, in the far field, the time derivatives are 
comparable to  the Laplacian, and the transient storage of energy can lead to 
transient fluctuations in T* of O(T,/B). Indeed, one-dimensional instabilities evolve 
on this slow time and are responsible for the unstable nature of the lower branches 
in figures 1 and 2. 

Three-dimensional instabilities are responsible for the upper unstable region 
marked in figure 1 and these also evolve on a slow timescale, but one for which 
t K 8. This emerges from the analysis of Buckmaster et al. (1990) and we know of no 
simple a priori demonstration of this fact. 

2.2. Non-dimensional variables 
We use R, (the Zeldovich radius) as the reference length everywhere except in $4. The 
non-dimensional activation energy is 

and other non-dimensional quantities are 



Flame balls stabilized by suspension in jluid with steady velocity 413 

The multiple choices simply reflect the fact that  different variables are appropriate 
accordingly as we describe the near field or the far field, and one- or three- 
dimensional perturbations to the flame sheet. Only in $4 is the latter of concern and 
so until then the discussion assumes one-dimensional flame-sheet perturbations. 
Then the appropriate timescale is T ( t  a 0”). 

Far-field variables are X ( x  a O), V( D a O-’), P ( p  a 0-2) ; near-field variables 
X(X oc Oo) ,  V ( D  a P)), P. An appropriate definition of the PQclet number, a measure 
of the ratio of convection terms to diffusion terms in the near field, is then 

(2.10) 

where w is a dimensional velocity gradient characteristic of the applied outer flow. 
Since w is of order h/(O2pE R: C p ) ,  Pe is of order ( l / O z ) .  As noted in $ 1, the incremental 
fluxes arising from convection are proportional to (Pe); so that these are O( l / O )  and 
play as important a role as the 0(1/8) radiation losses (fcr 0-l). This motivates the 
scaling that defines V. 

2.3. The far-$eld equations and the applied velocity jield 
We are concerned with the response of the flame ball to linear shear and straining 
flows, and to see how these are to  be imposed it is necessary to examine the far-field 
equations. In  the far field it is appropriate to  write 

so that the continuity equation 

is, to leading order, V , . V = O .  

The momentum equation simplifies to  

(2.1 1)  

(2.12) 

(2.13) 

(2.14) 

where Pr (=,uC,/A) is the Prandtl number. Thus, provided the near field generates 
no significant flow (a matter examined below), any suitable solution of the constant- 
density Navier-Stokes equations can be chosen for the flow field provided that the 
velocity vanishes as R = 14 + O  where the flame ball is located. We shall consider 
linear steady flows only. 

7 and & satisfy the equations 

1 
1- - v;q, - = -v2 y DT 
D7 DT Le l ’  

(2.15) 

14-2 
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2.4. The near-field equations 
Terms that are O( 1/02) in the near field need never be considered (0( l/O) terms play 
a profound role, however, because of the sensitivity that arises from the Arrhenius' 
factor). Thus, neglecting O( 1/02) terms, the near-field equations are 

(2.16) 

Recall that, by choice, F is only non-zero in the burnt gas. 
We are concerned only with spherically symmetric solutions for T ,  Y and p. 

(Asymmetry in the far field does not destroy the symmetry in the near field up to  and 
including O(l/O) terms.) Moreover these equations are linear in ii which can, 
accordingly, be written as 

(2.17) u = iis+iiu, 

where iis is the extension of the steady far field into the near field (modified by the 
density changes), and uU is the unsteady radial velocity generated by the temporal 
density variations. Thus 

- 

5= 1.1. 
Since, to leading order in the unburnt gas (cf. (2.6)), 

(2.18) 

(2.19) 

then (iiU),oc +* as F + W ,  (2.20) 

which generates 0(1/0) variations in V in the far field, and so is of no consequence. 

3. Solution for a spherical flame ball 
I n  this section we construct solutions in the near field and far field, and match 

them to generate steady solutions for a flame ball in a linear shear or straining flow. 
We also consider the linear stability of these solutions to one-dimensional (spherical) 
disturbances. 

3.1. The fundamental equation for the @me-ball radius 
Examination of the near field enables us to construct an equation for F* that  contains 
only prescribed parameters and a single time-dependent variable that is a 
characteristic of the far-field solution. This is the fundamental equation for the 
flame-ball radius. 
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Equations (2.16) for T and Y can be solved in a straightforward fashion. With the 

8 =  8*(7) (3.1) 
flame sheet located at 

we have, in 8 < F*, 

I 1 
Y = o ,  T =  ~ + - [ K + ~ F b ]  -I-..., e 

where K is a constant to be determined. 
The solution in 8 >  F* is 

(3 .3)  

where the matching conditions at infinity and continuity a t  the flame sheet have 
both been used to first order. Second-order continuity a t  the sheet requires 

B,+E, = 0,  A ,+D,  = K + Y * F b .  (3.4) 
The jump condition (cf. (2 .4) )  

(3.5) 

E 
requires Dl+$+p*Fb = 0. (3 .6)  

And the condition 

where 

leads to 

The first formula in (3.9) follows from the fact that F* = 1 (the flame radius equals 
the Zeldovich radius) when F .  = Tb and there are no heat losses; since B is 
proportional to R, this recaptures the formula (2 .7b )  for the Zeldovich radius. 

Using (3.4) and (3 .6) ,  (3.9) can be written as 

where 

Note that 

(3.10) 

(3.11) 

1 = F*exp 

B 
Le 

1 1 

h=A,+'. 

Le e T + - Y =  z + - h +  ... (3.12) 
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Since h can be determined by matching with the outer solution, (3.10) is the 
fundamental equation that determines F*, both for steady and unsteady problems. 
For example, for steady combustion with no far-field losses, h = 0 and (3.10) is the 
result from Buckmaster et al. (1990) shown in figure 1 with p = F b / 6 q .  

3.2. Steady solutions 

In general, the variable h in the fundamental equation (3.10) does not vanish, and in 
this section we calculate i t  when the far-field velocity is linear. 

satisfy (2.15) which must be solved subject to 
the following boundary and matching conditions : 

The far-field perturbations TI and 

The flame ball acts as a point source of heat and a point sink of mixture each with 
a strength proportional to v*. 

The boundary-value problems for TI and & are of the form 

(3.14) 

C+O as R+m, ) 

where for the linear velocity fields of interest 

a solution of (2.13), (2.14). 
V,  = G ,  Xi, (3.15) 

The goal is to calculate AC, and for this we turn to the discussion of Batchelor - 
(1979). 

Defining the Fourier transform 

e(k, 7 )  = ePik 'T(X,  7) dX, s 
the solution for an instantaneous point source of strength 

6 = Q 0  exp ( - K k i  kjBi,), 

where the symmetric tensor B, is a function of 7 and 
problem 

J B, - J i i 7  as ?-to. 

(3.16) 

Qo is 

(3.17) 

satisfies the initial-value 

(3.18) 

The steady solution for a source of fixed strength Q is found by integrating (3.17) so 
that 

6 = Q j: d7 exp ( -Kki k, B,,), (3.19) 
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and inversion yields I 

Here D is the determinant of the matrix B and b, is the cofactor of the matrix 
element B,. 

In  order to calculate AG we evaluate J at the origin, whence 

Some specific linear flows will now be considered. 

Linear shear 
In  the case of simple shear v = (y& 0, O ) ,  

D is given by the formula 
D = 73( 1 + &y27'), 

so that 

Thus and 5 have the behaviour 

and 

(3.24) 

j as R+O 

h = - &- YiUl (1  - (Le);) F*. 
Le 

(3.21) 

(3.22) 

(3.23) 

1 (3.25) 

(3.26) 

If the Lewis number is equal to unity the thermal energy removed by convection is 
balanced by the energy addition associated with an increased flux of Y ,  and h 
vanishes. But, for Le < 1, h is negative corresponding to net energy removal. h is 
proportional to (1  - (Le)i) because the convective fluxes vary as the square-root of the 
PBclet number. 

When the volumetric heat losses are neglected (F, = 0), (3.10) now becomes 

(3.27) 

This equation determines how the radius of the flame varies with the shear y (figure 
2). If r > e-l quenching occurs, and for smaller values of r there are two possible 
solutions. The picture is similar to  that of figure 1, the linear dependence of h on F* 
creating some minor differences. The stability of these solutions is considered later. 

Plane strain 
Here 

(3.28) 
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whence 

and 

(3.29) 

(3.30) 

The result is identical to that for simple shear provided we make the substitution 

ybl  + E h 2 .  (3.31) 

Axisymmetric straining motion 
With 

and 

1 
2E: D = -sinh2(E17)sinh(2ElT) 

(3.32) 

(3.33) 

(3.34) 

which is identical to the result for plane strain. 
All of these flows have the same impact on the flame ball, expressed in figure 2. 

Heat loss in the far field by radiation or to  a cold wall has the same effect - only the 
precise definition of the heat-loss parameter a! varies. In this sense figure 2 is a 
universal curve. I n  certain applications (such as the non-uniform flows treated here) 
a is, in principle, under the control of the experimentalist. The ramifications of this 
are discussed in $5. 

3.3. Stability analysis 

The Zeldovich solution is unstable and the most important characteristic of heat 
losses is that they can be stabilizing. In this section we examine the one-dimensional 
stability of the steady solutions described above. 

The fundamental equation for the flame-ball radius, (3.10), is correct for the 
unsteady problem provided that the flame sheet is spherical, and for a linear stability 
analysis it is appropriate to write it in its linearized form, 

(3.35) 

where F * ~  is the stationary radius and $*, h' are perturbations. When h' is determined 
from an examination of perturbations of the far-field variables and K ,  this 
equation controls the linear stability. Far-field perturbations are governed by 

DY' 1 D T  
D7 DT Le 

-=v;T', -- - -ViY 

YP ?* K ?* T + = + A T +  ..., I"+--+ AY+ ... as R+O, R 

1 
Le 

h'= A T + - A Y ' ,  

T+O, Y ' + O  as R+m. 

(3.36) 
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It is appropriate to  assume that 

(3.37) 

and then evaluate A T  and AY' for large 7 .  This can be done by adapting Batchelor's 
(1979) method to the problem of a time-dependent source so that once again we 
consider (3 .14)  for C, now with 

4 r* = €ear, Re (a )  > 0 

Q eaT 
~ R K R  

C+- + A C + . . .  as R + 0 , 7 > 0 .  

The result (3 .19)  is then replaced by 

exp ( - Kki k j  Bii): 

(3.38) 

(3.39) 
. -  

and upon inversion 

C = - Q ear r e e x p  (- E) +7 Q ear r dm exp (-") 
( 4 7 ~ ~ ) :  ms 4Km (47KK)5 0 4Km 

e-am R2 Xi X, b, x{zexp(z- ~ K D  ')-$} . (3.40) 

Taking the limit R-tO, and with 7 large, it follows that 

and 

Q ears e-am 

AC=- (4XK)t' S = /oadm[~--!+], 

h' = a (1 - (he):]  8. 
Le (47~)5 

(3.41) 

(3.42) 

When this is substituted into (3.35) we arrive at the equation governing the 
eigenvalue a,  

(3.43) 

We now set Fb = 0, neglecting volumetric heat losses, and deduce the stability 
consequences for simple shear and strain. 

Linear shear 

Referring to (3 .22) ,  (3 .23) ,  S is defined by 

(3.44) 

It is immediately clear that  the only roots of (3.43) are real, for if a = a,+ia, it  is 
necessary that 

(3.45) 

and since, apart from the factor sinaim, the integrand is a monotone decreasing 
function of m, this condition can only be satisfied if a, = 0. 

The neutral stability point (a = 0 )  is located a t  F * ~  = (the quenching point) 
and a > 0 for F * ~  < I-l. Thus the entire lower branch of figure 2 is unstable. 



420 J .  Buckmaster and G .  Joulin 

Simple strain 

instability is predicted for the lower branch (only). 

upper branch (F* > e) as candidates for physically realizable flame balls. 

Here also, for both plane and axisymmetric strain, there are no complex roots and 

For all of these flows the one-dimensional stability analysis leaves all points on the 

4. Three-dimensional stability analysis 
In  this section we consider disturbances to the stationary solution characterized by 

corrugations of the flame sheet. The analysis is quite complicated, but has two 
motivations. First, it is shown in Buckmaster et al. (1990) that  three-dimensional 
instabilities restrict the range of stable solutions on the upper branch (see figure 1, 
instability for F,,, > eg), a possibility here also. And second, the analysis of Buckmaster 
et al. (1990) is based on the constant-density model (eliminating induced 
hydrodynamic disturbances) and here we avoid that assumption. Thus the present 
analysis contains, as a special case (Pe+O), a correct analysis for the flames of 
Buckmaster et al. (1990). 

Consider the equations that govern the near field. As noted earlier, the correct 
timescale is F ( t  cc 0). Correspondingly the flow scalings are different from those 
appropriate for one-dimensional disturbances : we use V(v  K 0-l) and p ( p  K 0-l). 
Then, 

These equations are unchanged in form if a lengthscale different from R, is used ; and 
the relative magnitude of terms is unchanged if the new length is comparable to R,. 
It is convenient to use the steady radius R, as the reference length, and then the 
undisturbed flame sheet is located a t  F* = 1.  

We consider perturbations to the flame sheet in the form of surface harmonics, 

where 0, q5 are angular coordinates. 

replace y b ,  by E b 2 )  : 
We record here the stationary solution for a simple shear (for a simple strain 
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where the stationary radius R, is determined by the equation 

bearing in mind that now B, Fb and y all depend on R,. 

satisfy the following equations : 
Consider infinitesimal perturbations to the stationary solution z, p,, etc. These 

for r E  [0, r*) U (r*,  00)  (i.e. excluding the flame-sheet) 

for F'E[O,  co) 

a -p, V' = - vp '+Pr [V2V++V(V-  V)]. e 

( 4 . 5 ~ )  

(4.5b) 

( 4 . 6 ~ )  b )  

( 4 . 6 ~ )  

4.1. Some preliminaries 

Taking the curl of the momentum equation ( 4 . 6 ~ )  yields 

a -  -v x (Po V') = PT02(V x V) e (4.7) 

and the left-hand side is small in the near field. For large values of F the equation can 
be approximated by 

a -  -V x V' = PrV2((v x V') e (4.8) 

where both terms are comparable when F =  O(&) (a 'far-field' insofar as three- 
dimensional disturbances are concerned, the structure of which is unimportant and 
the essential role of which is merely to impose a ' minimum singularity ' condition on 
the solution in the region F = O( 1 ) ) .  Thus there is no mechanism to generate vorticity 
to first order, and we may write 

where q5 is the velocity potential. 
V' = vq5, (4.9) 

Temperature perturbations satisfy Laplaces equation to first order, with solutions 

( 4 . 1 0 ~ )  A; -7i 

e T = - r  P+ ... ( F <  1))  

T = A~F-"- 'P+  ... ( F >  1 ) .  (4.10 b )  

We have anticipated that flame-temperature perturbations are O( lp)) hence the 
perturbations in the burnt gas are small. And for F > 1 we have invoked a minimum 
singularity condition, discarding the solution F which cannot be matched with a far 
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field on the scale f =  O(&). This kind of choice will be made on several occasions 
below, and in due course we shall indicate the nature of the solution in this far field. 

4.2. The velocity potential 
Consider now the continuity equation ( 4 . 6 ~ ) .  Writing 

4 = m q  

this is 

In  F <  1 this simplifies to 

F " ' + 2 ~ W - ( n ~ + n ) @  = 0 

(4.11) 

(4.12) 

(4.13) 

to leading order, with solution @ = B-r". (4.14) 

(4.15) 
d@ 

This implies that n @ = -  
dF 

on the burnt side of the flame sheet, and this will also be true on the unburnt side 
since $ and V' are continuous. 

In  f >  1 ,  

?( 1 + UF) @" + r (3  + 2uq @' - (n2 + n) (1  + UT) @ = aA: f -n+2 (4.16) ( T b - q )  ' 

where 

To solve this equation we write 

T 
Tb-qfip' 

u=-  

~=-1+(l+n+n2);, n=--'+' , ( 1 + 4 ~ 2 + 8 ~ ) : ,  J 
so that S(l+S)g"+[2N+3+2(1+N)s]g'-Ng = s1-n-N, 

with the boundary condition (4.15), i.e. 

d9 - u - =  (N-n)g at s = u .  
ds 

Moreover, g + O  as s+co 

since the behaviour FN is not permitted (for then 4 - P). 
Define 

dt tN+n(  1 - t )N-n+l(  1 + ts)n-N ; 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

this hypergeometric function is a solution of the homogeneous equation. Then 

where K is a constant determined by the boundary condition (4.19). 
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4.3. Temperature perturbations in r > 1 

With the velocity determined we may now calculate corrections to T' in F >  1. 
Extending the ansatz (4.10 b) 

where, from (4.5a), 

F ! P " + ~ F ! P ' - ( ~ ~ + ~ )  Y = d ~ [ P ( F ) + & ( T ) ] .  

Here the functions P and Q are defined by 

(4.23) 

(4.24) 

(4.25) 

Since Y+O as F+ co (the P solution is not acceptable), the solution is 

(4.26) 

4.4. Solution for Y' 

Turning now to (4.5b), the solution for Y' in T >  1 is 

where 

Z(T) Y' = C,T-n-'P+-P+ ..., e 
aAiLeY,u 

T ' L F + ~ F Z - ( ~ ~ + ~ ) . Z  = aC,LeP(F)- Q(T) .  

(4.27) 

(4.28) 

This has solution 

= c p - 1  + a 0  C +2n LeP S, dr r-n-lP(r)-- di Le :up - dr r-n-lQ(r) 
1 +2n 1 

From this description of the perturbation structure it is apparent that on the scale 
r = O(&) we have, to leading order, the balance 

for which the solution that does not grow exponentially a t  infinity, involving the 
Bessel function K,,;, behaves like F - ~ - '  as T+O and matches with (4.10b). The other 
variables can be discussed in a similar fashion and this justifies the minimum- 
singularity condition that has been invoked during this discussion. 

4.5. The dispersion relation and its consequences 

We have expressed the perturbations T' and Y', correct to O(l/O), in terms of the 
constants A;, A:, A:, C, and C,.  Algebraic equations relating these constants and the 
amplitude of r i  (i.e. 6) are generated when the connection conditions at the flame 
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sheet are invoked. These equations are given in the Appendix. The algebraic system 
is homogeneous and only has a solution if a satisfies the dispersion relation 

(4.30) 
Y,((Le)-'- I )  J drr-*-'(P(r)+Q(r)) 

1 

Numerical evaluation of the integral shows that the denominator is positive. For 
example, when n = 2, u = 

fi dr r-*-lQ(r) = u3 0. l 1 . . . 

we find K = -0.000236.. . and 

which is positive. The contribution 

is positive by inspection. Note that this result does not explicitly contain y - the only 
role played by the shear is in controlling R, (contained in Fb). 

It is useful, in interpreting this result, to identify the connection between 
dimensional and non-dimensional variables. If the flow is described by 

tr = (wz, ,O,O) (4.31) 

so that w is a dimensional shear gradient, then 

e2pp C R: w 
Y =  h" . 

Other useful formulae are 

Then the steady radius is described by 

and we have three-dimensional instability if 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

corresponding to the choice n = 2 in (4.30). This agrees with previous results 
obtained for r = 0 (zero PQclet number) using the constant-density model 
(Buckmaster et al. 1990). (Note that a = 0 when n = 1, for this corresponds merely 
to translation of the flame ball with unchanged shape. Thus n = 2 is the smallest 
value of n for which a > 0.) 
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It follows that if 52 = 0 there is no three-dimensional instability of the type 
considered here. As Tis reduced along the upper branch ever larger stable flame balls 
are generated but the flame-temperature is 

and 

(4.36) 

so that the description is not uniformly valid. We have not examined this non- 
uniformity. 

5. Concluding remarks 
We have shown that extraction of energy by a non-uniform flow field can stabilize 

flame balls. This is an extrinsic agency unlike the radiation losses considered in earlier 
work. This has two consequences. 

When the only heat loss mechanism is intrinsic it is to be expected that for a given 
mixture all flame balls will be equal in size. With extrinsic losses the size of each flame 
ball will depend on the magnitude of the agencies acting upon it. I n  ignition 
experiments it is to be expected that each ball will experience a different non-uniform 
flow, and this provides a plausible explanation for the different sizes that are 
observed. It would appear that in drop-tower experiments the size distribution tends 
to be bimodal and whether or not this is consistent with these remarks would require 
more knowledge of the unsteady flow field than is presently available. 

Extrinsic agencies are, in principle, under the control of the experimentalist. This 
is of little importance in drop-tower experiments, where the test times are so short, 
or in flight experiments where there is significant g-jitter, but could be of interest in 
orbital experiments (shuttle or space station). 

Amongst other things, controlling losses via a flow field could lead to flame-ball 
formation in mixtures that do not support them when the only losses are from 
radiation. To date, flame-ball gases have two characteristics - they have a Lewis 
number significantly less than unity, and they are near-limit mixtures. If the 
concentration of the deficient component (e.g. hydrogen in a lean hydrogenlair 
mixture) lies sufficiently above the limit value, the initial flame kernel generated by 
the spark forms cells and these separate (because of the small Le) but do not close to 
form balls. It is plausible to associate this failure with the three-dimensional 
instability of figure 1. Decreasing the mixture strength towards the limit value 
increases the relative radiation losses (Fb is proportional to RE, (2.9), and R, is 
proportional to Y f  eEIZRTb, (2.7), so that a decrease in Y p  (and therefore Tb) increases Fb), 
and this can eliminate the instability and allow flame-ball formation. Alternatively, 
increasing the losses by means of an applied flow could also eliminate the instability 
without a change in mixture strength. 

One final remark: the present results lend credence to the suggestion in 
Weeratunga, Buckmaster & Johnson (1990) that convection stabilizes the flame caps 
observed at lg. 

The work of John Buckmaster was supported by the Air Force Office of Scientific 
Research. We are grateful to R. E. Johnson whose broad knowledge of the fluid- 
mechanics literature spared us many hours in the library. And we note that the title 
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of our paper is adapted from that of Batchelor (1979), partly to recognize that our 
task was considerably simplified by the elegant discussion of small-P8clet-number 
flows contained therein. 

Appendix 

here. These are applied at  T = F* = 1 + e P  whence for example, 
The flame-sheet conditions governing three-dimensional perturbations are written 

dY, - 
dT 

Y* = Y ( T =  l + O ) + e P - ( r =  l+O) .  

This must vanish and evaluation at the O( 1) and O( l/O) levels yields the formulae 

(A 2)  c, + €4 = 0, 

(A 3) 
In  a similar fashion continuity of T requires 

Y 
Le 

A,+-& = 0, 

Noting that for infinitesimal perturbations the distinction between the normal and 
the radial directions is insignificant, the gradient condition (3.5) leads to 

- ( n + l ) A T + -  d r r - n - l ( p ( r ) + & ( r ) ) - e ~ ~ - n A ;  = 0. (A 6) 

We have only written the O(l /O)  result since the O(1)  result is redundant. Finally, 
the condition (3 .7)  yields 

- (n+1)Co-e2Yf=-  A ; + € -  
2T2, " (  2) 

Equation (3 .7)  can only be used at the O ( 1 )  level since T* is known only to O(l /O) .  
The six equations (A 2)-(A 6) define a homogeneous system for the constants A; ,  

A,+, A:, C,, C ,  and e and this only has a solution if a satisfies the dispersion relation 
(4.30). 

REFERENCES 

BATCHELOR, G. K. 1979 Mass transfer from a particle suspended in fluid with a steady linear 
ambient velocity distribution. J. Fluid Mech. 95, 36-00. 

BUCKMASTER, J .  D., JOULIN, G .  & RONNEY, P. D. 1990 Structure and stability of non-adiabatic 
flame-balls. Combust. Flame 79, 381-392. 

BUCKMASTER, J .  D., JOULIN, G. & RONNEY, P. D. 1991 Structure and stability of non-adiabatic 
flame-balls, 11. Effects of far-field losses. Combust. Flame (to appear). 



Flame balls stabilized by suspension in Jluid with steady velocity 427 

BUCKMASTER, J. D. & LUDFORD, G. S. S. 1983 Lectures on. Mathematical Combustion, p. 22. CBMS- 
NSF Regional Conference Series in Applied Mathematics, vol. 43. SIAM. 

LEWIS, B. & ELBE, G. VON 1987 Combustion, Flames and Explosions of Gases, 3rd edn, p .  326. 
Academic. 

RONNEY, P. D. 1990 Near-limit flame structures a t  low Lewis number. Combust. Flame 82, 1-14. 
WEERATUNOA, S., BUCKMASTER, J. & JOHNSON, R. E. 1990 A flame-bubble analogue and its 

WILLIAMS, F. A. 1985 Combustion Theory, 2nd edn. Benjamin/Cummings. 
ZELDOVICH, YA. B., BARENBLATT, G. I., LIBROVICH, V. B. & MAKHVILADZE, G. M. 1985 The 

Mathematical Theory of Combustion and Explosions, p. 327. New York: Consultants Bureau. 

stability. Combust. Flame 79, 100-109. 




